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S U M M A R Y
We develop a methodology to separate continuous seismic waveforms into random noise (RN),
not random noise (NRN) produced by earthquakes, wind, traffic and other sources of ground
motions, and an undetermined mixture of signals. The analysis is applied to continuous records
from a dense seismic array on the San Jacinto fault zone. To detect RN signals, we cut hourly
waveforms into non-overlapping 1 s time windows and apply cross-correlations to separate RN
candidates from outliers. The cross-correlation coefficients between different RN candidates
fall into a tight range (i.e. 0.09–0.35), while cross-correlation coefficients of RN candidates
with NRN signals (e.g. seismic or air-traffic events) are lower. The amplitude spectra of RN
candidates have a well-defined level, while the amplitude spectra of other signals deviate
from that level. Using these properties, we examine the amplitude spectra of moving time
windows and cross-correlation coefficients with RN templates in each hour. The hourly RN
is quasi-stationary and the results cluster tightly in the parameter space of cross-correlation
coefficients and L2 norm deviations from the mean spectra of RN candidates. Time windows
with parameters in this tight cluster are identified as RN, windows that deviate significantly
from the RN cluster are identified as NRN and windows with values in between are identified
as mixed signals. Several iterations on each hourly data are used to update and stabilize
the selection of RN templates and mean noise spectra. For the days examined, the relative
fractions of RN, NRN and mixed signals in local day (night) times are about 26 (42 per cent),
40 (33 per cent) and 34 per cent (25 per cent), respectively.

Key words: Fourier analysis; Time-series analysis; Seismic noise; Site effects; Wave propa-
gation; Wave scattering and diffraction.

1 I N T RO D U C T I O N

Seismic ground motion is generated by a variety of mechanisms
including tectonic sources such as earthquakes and tremor (e.g.
Shelly et al. 2007; Ross et al. 2017), interactions of ocean waves
with the solid Earth (e.g. Gerstoft & Tanimoto 2007; Hillers et al.
2013), storms and wind shaking of structures, trees and other ob-
stacles (e.g. Tanimoto & Valovcin 2015, Johnson et al. 2019) and
various anthropogenic sources such as trains, cars, airplanes, heli-
copters and wind turbines (e.g. Eibl et al. 2015; Salvermoser et al.
2015; Neuffer & Kremers 2017; Inbal et al. 2018; Meng & Ben-
Zion 2018a). It is generally assumed that continuous waveforms
processed to remove impulsive sources (e.g. Bensen et al. 2007)
consist primarily of a random wavefield, referred to as the ambient
seismic noise, which is suitable generally for imaging and monitor-
ing of sub-surface structures (e.g. Shapiro et al. 2005; Brenguier
et al. 2008; Zigone et al. 2015). Extracting accurate Green’s func-
tions from the ambient seismic noise requires a stronger condition

that the wavefield is fully diffuse (e.g. Weaver 1982; Shapiro et al.
2000; Sánchez-Sesma et al. 2008). Demonstrating that a wavefield
is diffuse requires analysis with techniques of the type developed
by Margerin et al. (2009), Sens-Schonfelder et al. (2015) and Liu
& Ben-Zion (2016).

In this paper, we develop techniques based on cross-correlations
and the amplitude spectra of moving time windows to separate
wave packets with random signals from waveform sections having
structured signals. The results help to clarify general aspects of ob-
served seismic waveforms, and the separated random/not-random
signals can be used in various additional analyses involving detec-
tion of small seismic events, imaging and monitoring sub-surface
structures, etc. The study employs data of a dense seismic array
with 1108 vertical component 10 Hz geophones at the Sage Brush
Flat (SGB) site on the Clark branch of the San Jacinto fault zone
(SJFZ) southeast of Anza, California (the red box, Fig. 1a). The
array recorded continuously at 500 Hz from 2014 May 7 to 2014
June 13 in an area of about 600 m × 600 m (Fig. 1b) with nominal
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Figure 1. (a) Regional map showing the dense array on the San Jacinto fault zone (the red square) with the regional seismic stations (the black triangles) in
southern California. (b) The coloured circles show the median absolute amplitude of waveforms recorded at the array stations on Julian day 146, 2014. The
geophones with analysed data are marked by the squares. The background grey colours represent topography.

sensor spacing of 10 m normal to the fault and 30 m along-strike
(Ben-Zion et al. 2015). The dense array data have been used for
detailed imaging of subsurface structures at different depth ranges
(Hillers et al. 2016; Qin et al. 2018; Mordret et al. 2019) and detec-
tion of microearthquakes (Meng & Ben-Zion 2018b; Gradon et al.
2019).

As part of an effort to understand the main contributions to ground
motion observed at the SGB site, Meng & Ben-Zion (2018b) anal-
ysed waveforms generated by airplanes and helicopters, and found
that air-traffic events occupy >7 per cent of the recorded wave-
field. Johnson et al. (2019) showed that wind interactions with
obstacles above the surface produce ground velocities larger than
those expected to be generated by earthquakes with magnitudes
M ≤ 1.5 about 6 per cent of the day. The air-traffic and wind-related
events produce earthquake- and tremor-like waveforms that stand
out clearly from the seismic noise field recorded at the site. Less

frequent sources of seismic signals that are visually distinguish-
able from the noise are genuine earthquakes and local car traffic
(Fig. 2).

Inspection of waveforms at the SGB site shows a variety of emer-
gent and impulsive signals occurring throughout the day. Quanti-
tative analysis of the main classes of waveforms can improve the
understanding of the observed ongoing ground motion and pro-
vide useful information for refined seismic imaging and detection
studies. Towards this goal, we use the dense SGB data to separate
Random-Noise (RN) signals from wave packets containing Not-
Random-Noise (NRN) data produced by various sources such as
air and car traffic, wind and earthquakes. To identify wave packets
that may be labelled as RN, we use 1000 1-s time windows for each
hour and select those with the lowest root-mean-squared (RMS)
amplitude as initial candidate RN wave packets. The selection of
RN signals is refined iteratively using cross-correlations and the
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Figure 2. Waveforms in count generated by (a) a local M 2.29 earthquake, (b) an air-traffic event, (c) a car event and (d) a tree-shaking event driven by wind
gust. (e)–(h) Corresponding spectral amplitudes of (a)–(d). (i)–(l) Corresponding spectrograms of (a)–(d).

distribution of the amplitude spectra. The method allows us to sepa-
rate each 1-s interval of the continuous waveforms into RN signals,
NRN with higher amplitude in time domain or some structure in
the frequency domain, and mixed signals where neither the RN nor
NRN features are dominant. The RN windows can be used to ob-
tain better estimates of noise spectra, monitor hourly and longer
changes of the background noise level, derive structural informa-
tion and measure the degree to which the noise field is diffuse. The
RN windows detected by our method can also be used as training
data sets for machine learning analyses of phase picking and sig-
nal classification. The time windows containing NRN signals may
be further analysed to select templates with specific signals such
as those generated by air/car traffic, wind, earthquakes or tectonic
tremor for detection and classification of such signals.

2 A NA LY S I S

Seismograms are analysed using cross-correlations of waveform
segments and a classification algorithm to extract parameters in time
and frequency domains. Data recorded by station R3010 (Fig. 1)
is used to illustrate the method of separating continuous seismic
waveforms into RN, NRN and a mixture of the two. Station R3010 is
in the centre of the array and has good data quality to demonstrate the
method. Several iterations are implemented to update and stabilize
the RN templates, mean noise spectra and separation results. The
methodology is summarized in a workflow diagram (Fig. 3). We
analyse the seismic records in short periods, TS = 1 hr, and cut the
waveforms into 1 s non-overlapping windows, T , with 500 samples
each to stably estimate the amplitude spectra and cross-correlation
coefficients. The window length T should be adjusted for other
data with different sampling rates. The mean and linear trend are

removed and waveforms are high-pass filtered at 2/T (2 Hz for this
study) to include at least two cycles in each window.

To investigate potential techniques and parameters that can sepa-
rate RN and NRN signals, we first generate synthetic RN by Fourier
transforming a low amplitude 500 s waveform recorded at night on
sensor R3010, replacing the phase information with a uniform dis-
tribution of values from 0 to 2π , and performing an inverse Fourier
transform on the amplitude spectrum and randomized phase (Figs 4a
and b). Next, we extract a local M2.29 earthquake and an air-traffic
event recorded by sensor R3010 to use as example NRN waveforms
(Figs 4c and d). The waveforms are cut into 1 s non-overlapping
windows to obtain 500 synthetic RN windows, 25 earthquake win-
dows and 50 air-traffic event windows (the grey boxes in Figs 4c
and d).

The maximum of the absolute value of cross-correlation co-
efficients (MACCs) is computed for all window pairs. Fig. 4(e)
shows the distributions of MACCs for RN–RN windows (grey),
RN–earthquake windows (blue) and RN–air-traffic windows (red).
The MACCs of RN–RN windows have a well-defined interval be-
tween 0.09–0.35, while the distributions of RN–NRN systematically
shift to intervals with lower median values demonstrating a simple
statistical difference between the RN and NRN waveforms. The
median of MACCs for these target windows is the first extracted
time domain parameter to differentiate the RN and NRN signals.
Fig. 5 shows that the distributions and standard deviations (STDs)
for earthquake–earthquake windows (green), air-traffic–air-traffic
windows (purple) and earthquake–air-traffic windows (brown) are
spread over a broader range than RN–NRN windows. This indicates
that the NRN windows contain both very similar and highly dissim-
ilar waveforms. For example, the spectrogram of the air-traffic event
(Fig. 2j) has a changing peak frequency due to the Doppler effect
(Meng & Ben-Zion 2018a) that results in high MACCs for similar
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Figure 3. A workflow diagram summarizing the main steps of the method.
The workflow includes multiple iterations to update and stabilize RN, not
RN and the mixture.

window pairs. The STDs of the MACCs for NRN–NRN windows
are significantly higher than the STDs of MACCs of RN–NRN win-
dows (Fig. 5b). This feature is used as the second extracted time
domain parameter to differentiate the RN and NRN waveforms.

To adopt the method to continuous seismic records, we assume
that the RN is quasi-stationary (i.e. statistically time invariant)
within a short period of 1 hr. This implies that the amplitude spec-
trum of RN only changes slightly within a short period TS . Sup-
porting Information Fig. S1 shows that the RN is generally quasi-
stationary within time intervals of about 1 hr, although the noise
level varies from day to night. In the frequency domain, the spectra
of RN and NRN windows deviate significantly from each other.
The L2 norm of the deviation of an amplitude spectrum of a given
target window and the mean amplitude spectra of RN candidates
provides a third extracted frequency domain parameter to differ-
entiate between RN and NRN windows. These three parameters
in time and frequency domains are used to classify time windows
of RN.

The corresponding three parameters extracted in time and fre-
quency domains are shown in Fig. 6 for the 1 hr waveform from
sensor R3010 in Julian day 146 from 14:00 to 15:00 (local time).
The data contain frequent impulsive signals throughout the hour,
and the median MACCs of target and RN windows generally show
a decrease during the strong bursts. In the following, we describe

how we iteratively build libraries of RN, NRN and mixture signals
to separate the continuous waveforms into different classes.

The sets of RN, NRN and the undetermined mixtures are denoted
by N , S and M , where

N = {i : i ⊆ indexes of all RN windows} ,

S = {i : i ⊆ indexes of all NRN} ,

M = {i : i ⊆ indexes of undertermined mixtrues} . (1)

These three sets satisfy

N ∪ S ∪ M = U = {i : i is an integer, 1 ≤ i ≤ TS/T } ,

N ∩ S = N ∩ M = S ∩ M = ∅, (2)

where TS/T is 3600 in this study. The element i is linked to the
waveform of i th window and its MACCs with other windows. Since
windows with a small RMS value are more likely to be RN, we first
build an initial RN library N by taking the indexes of 1000 windows
with the lowest RMS. The initial NRN library S contains indexes
of the 1000 windows with larger RMS than the others. The initial
library of the undetermined mixture, which is a transition from RN
to NRN, is the complement of the N and S sets.

To avoid redundant computations, we calculate the MACCs for all
pairs of the 3600 windows. The MACC of the i th and j th windows
is defined as

Ci j = max

(
abs

(
fi (−t) ∗ f j (t)

STD ( fi (t)) · STD
(

f j (t)
)
))

, (3)

where fi (t) and f j (t) are the waveforms of the i th and j th windows,
0 ≤ t ≤ T , STD( fi (t)) is the STD of all the data points of the i th
window. For the i th window, we compute the median of the MACCs
of the target window and RN windows:

CMDN
i = median (Cin)|n∈N ,n 
=i , (4)

and the STD of MACCs of the target window and NRN windows:

CSTD
i = STD (Cin)

∣∣
n∈S,n 
=i

. (5)

The outliers are removed by excluding windows with CSTD
i ≥

1.1 ∗ median(CSTD
j ), CMDN

i ≥ 1.1 ∗ meidan(CMDN
j ) and CMDN

i ≤
0.9 ∗ median(CMDN

j ), where 1 ≤ j ≤ 3600. The method is not sen-
sitive to the initial RN library. All libraries are updated iteratively
and stabilize quickly. The iteration stops when the total number
of changed elements in libraries N and S from two consecutive
iterations are < 0.5 per cent · TS/T . The CMDN

i and CSTD
i for each

window of the target waveform in Fig. 6(a) are presented in Figs 6(b)
and (d), respectively. The waveform of each window is cosine ta-
pered with a width of 5 per cent on each end to stably estimate the
amplitude spectrum using Fourier transform. Fig. 6(c) shows the L2
norm deviations from the mean spectra of RN windows.

Results of the classification algorithm performed in the parameter
space of the spectral deviation and CMDN

i are shown in Fig 7. Each
point in Fig. 7(a) represents a time window and the colours denote
the normalized data points density ρi , which is computed by the
total number of data points within a rectangle area centred at the
target points with a domain size of 0.2 · STD along each axis. The
hourly RN is quasi-stationary so the results should cluster tightly
(with high ρi ) in the parameter space. Fig. 7(b) shows the same
diagram but coloured by the CSTD

i . The windows with smaller CSTD
i

are more likely to be RN. To use both ρi and CSTD
i , Fig. 7(c) uses a
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Figure 4. (a) Amplitude spectrum of a 500 s waveform at night with low amplitudes. (b) Synthetic RN waveform using the amplitude spectrum in (a). (c)
Waveform of a local M 2.29 earthquake recorded by the geophone R3010 in the centre of the array. (d) Waveform of an air-traffic event recorded by the same
geophone. (e) Histograms of the MACCs of RN–RN windows, RN–earthquake windows and RN–air-traffic windows. The median values for each distribution
are shown above. The grey boxes show the NRN waveform segments used for the cross-correlation calculation.
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Fig. 3(e). The standard deviation of the NRN–NRN windows is significantly
larger than the standard deviation of RN–NRN windows.

weighted density as

ρW
i =

ρi

CSTD
i

max

(
ρ j

CSTD
j

) . (6)

This combines CMDN
i , CSTD

i and spectral deviations extracted
from the time and frequency domains, and, therefore, is more sen-
sitive to the difference between RN and NRN windows. Time win-
dows with parameters in the tight cluster with high weighted density
ρW

i (coloured by dark red in Fig. 7c) are identified as RN, time win-
dows that deviate significantly from the RN cluster are identified
as NRN and windows with values in between are identified as a
mixture. The contours in Fig. 7(c) show the criteria to determine
RN, NRN and the mixture. The corresponding sets are then updated
as

N = {
i : ρW

i ≥ 0.45
}
,

S = {
i : ρW

i ≤ 0.15
}
,

M = {
i : 0.15 < ρW

i < 0.45
}
. (7)

With the updated RN library N , we recalculate the mean ampli-
tude spectrum of RN and then update the spectral deviations for each
window. The CMDN

i and CSTD
i are updated correspondingly with the

new libraries N and S. This process is repeated for a few iterations
until the three libraries are stable. The solid lines in Supporting
Information Fig. S2 show the mean amplitude spectra of RN, for
example, waveforms (Fig. 6a) in different iterations. As a valida-
tion step, Fig. 7(d) presents the histograms of MACCs of RN–RN
windows, NRN–NRN and mixed–mixed windows. The MACCs of
RN–RN windows span a range of 0.09–0.35, while the MACCs of
not NRN–NRN windows span a much broader range. These results
are consistent with the histograms of the MACCs of the synthetic
RN, earthquake and air traffic shown in Figs 4(e) and 5(a). The
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Figure 6. (a) Example raw waveform recorded by sensor R3010 on Julian day 146, 2014 from 14:00 to 15:00 (local time). (b) The median of MACCs of
detected RN windows and target waveforms (CMDN

i ). (c) L2 norm deviations from the mean amplitude spectra of RN windows. (d) The STD of MACCs of
NRN windows and target waveforms (CSTD

i ).

thresholds in eq. (7) should be adjusted to minimize the difference
of distribution, if the histograms of the MACCs of the detected RN
(e.g. Fig. 7d) and the synthetic RN (e.g. Fig. 4e) are considerably
different.

3 A NAT O M Y O F R E C O R D E D
WAV E F O R M S

The waveforms and corresponding spectrograms of two example
hours recorded by geophone R3010 on Julian day 146 from 14:00
to 15:00 (local time) coloured, red, black and blue for RN, NRN and
mixed signals, respectively, are shown in Fig. 8. The earthquakes
detected by Meng & Ben-Zion (2018a) are highlighted by the green
vertical lines and occur in windows of NRN. The air-traffic events
from 200 to 400 s and 1000 to 1200 s also fall in windows of NRN
and have clear Doppler effect in the spectrogram (Fig. 8b). The RN
windows have signals with lower amplitudes. The NRN windows
have either larger amplitudes or clear signatures that stand out from
the background in the spectrograms. However, the windows with
lower amplitudes are not necessarily RN as exemplified by the time
window from 2550 to 2650 s marked with the red horizontal bar
in Fig. 8(a) and is identified as NRN due to three overtones in the
spectrogram. The analyses for night-time hours show similar results
with more time windows defined as RN. During the daytime RN and
NRN waveforms are found to occupy 25.9 and 34.1 per cent of the
time. During night-time, the RN fraction increases to 41.6 per cent

and the NRN fraction decreases to 25.2 per cent (Figs 8c and d).
As an additional demonstration of detecting NRN, Supporting In-
formation Fig. S3 shows the waveforms and spectrograms of an
example hour (Julian day 146 from 5:00 to 6:00 local time), and
a zoom-in view of an M 2.86 local earthquake with an epicentral
distance of 176 km recorded by geophone R3010. The entire earth-
quake waveform from the first arrival to the end of the clear coda is
identified as NRN in Supporting Information Fig. S3c, substantiat-
ing the sensitivity of the developed methodology.

Fig. 9 illustrates the discussed features in more detail using time
windows of only 100 s. The daytime data show NRN with large
amplitudes and strong energy around 150 Hz (Figs 9a and b). The
periods of RN contain lower spectral amplitudes as expected and
are not continuous for the 100 s duration presented. In general, the
energy of NRN spans a large spectral range and the transition from
RN to NRN is smooth. No hard threshold is determined to differ-
entiate the RN from NRN, and the mixture label is used to classify
the superposition of RN and weak NRN during the transitions.

Many NRN windows show significant energy around 150 Hz
(Fig. 8) and the signals possibly originate from the atmosphere or
very local sources since high-frequency seismic waves attenuate
quickly within distances of 20–30 m (Meng & Ben-Zion 2018a).
Aircrafts can generate high-frequency acoustic waves with little in-
trinsic attenuation in the air that couple to the ground and recorded
by the seismometers (Meng & Ben-Zion 2018b). However, the
Doppler effect of sources moving in the air is not observed in most
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Detection of random noise & waveform anatomy 1469

Figure 7. (a) A 2-D histogram of the example waveform (Fig. 6a) in the parameter space of CMDN
i and spectral deviation. The colours denote the normalized

data density. (b) Same as (a) but coloured by CSTD
i . (c) Same as (a) with colours denoting the normalized data density weighted by the inverse of the CSTD

i . The
contour lines show the criteria to determine RN, not RN and mixture signals. (d) histograms of MACCs of RN–RN windows, NRN–NRN and mixed–mixed
windows.

of the NRN windows indicating the vibrations are possibly gener-
ated by very local sources on the ground. The spectra for a geophone
located near a tall tree have this high-frequency signal (Supporting
Information Fig. S4) corroborating that some such sources originate
from objects on the surface. Supporting Information Fig. S4 shows
a clear propagation effect from geophone R2005 to its nearby seis-
mometers. The corresponding spectra at R2005 has a peak around
125 Hz and the high-frequency energy attenuates within 20 m. The
vibrations of the vegetation are likely driven by wind (Johnson et al.
2019) and the peak frequency at 125 Hz may be associated with in-
strumental effect or the coupling of the tree next to the sensor to the
ground, with possible generation of small failure events in the top
crust. At the SGB site, many of the NRN windows with significant
energy around 150 Hz are likely wind-generated ground motions if
air traffic is not observed in the spectrogram.

4 D I S C U S S I O N

The developed methodology uses waveforms from a single seis-
mic station at a time, to examine the statistical characteristics of
data segments in time and frequency domains, and separate the
records into RN, NRN and undetermined mixture. Seismic records
consist of RN, which may be associated partly with classical dif-
fuse noise, and NRN containing earthquakes and ground motions
produced by atmospheric and anthropogenic activities such as air

traffic, lightning, cars, trains and wind shaking of structures, vege-
tation and other obstacles above the surface. Small earthquakes can
be detected by multiple techniques such as template matching or
beamforming. Unlike tectonic activities, NRN produced by atmo-
spheric and anthropogenic activities can depend strongly on various
aspects of the site including the distribution and types of obstacles
above the ground and attenuation in the very shallow crust. NRN
is, therefore, not a distinct repeating signal, making it unfavourable
for similarity-based detection techniques.

The presented waveform classification method is stable and not
sensitive to the initial criteria of building and updating the libraries
three classes of waveforms. The method jointly examines the ampli-
tude spectra of moving time windows and the MACCs with RN and
NRN templates from hourly waveforms. The hourly RN is quasi-
stationary (Supporting Information Fig. S1) and the results group in
the parameter space of the median MACC and L2 norm deviations
from the mean spectra of RN candidates (Fig. 7). Time windows
with parameters in this tight cluster are identified as RN, windows
that deviate significantly from the RN cluster are identified as NRN
and windows with values in between RN and NRN are identified
as undetermined mixtures. Several iterations are performed on each
hourly data to update the RN templates and mean noise spectra until
the libraries stabilize. We tested an initial RN library by including
the indexes of 500 windows with the smallest RMS without exclud-
ing outliers and the results quickly converge in four iterations and
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Figure 8. (a) Example raw waveform recorded by R3010 on Julian day 146, 2014 from 14:00 to 15:00 (local time). The RN, NRN and mixture windows are
coloured in red, black and blue. (b) Corresponding spectrogram of the waveform in (a) with colours denoting power (dB). The data marked by the red horizontal
bar between (a) and (b) illustrate that windows with lower amplitudes are not necessarily RN, as evidenced by the three overtones in the spectrogram. (c)
Example raw waveform recorded by sensor R3010 at day 146 from 01:00 to 02:00 (local time). (d) Corresponding spectrogram of waveform in (c). The green
vertical lines in (a) and (c) mark the small earthquakes detected by Meng & Ben-Zion (2018b).

are almost identical to those shown in Fig. 8. The results are not
sensitive to the criteria in eq. (7) and perturbing the lower and upper
thresholds by 0.1 produces changes <1 per cent in the fraction of
time covered by RN and NRN. The results are also not sensitive to
the domain size used to compute the data point densities in Fig. 7,
which is 0.2 · STD along each axis. Variations of this choice from
0.1 to 0.4 · STD produce no more than 0.6 per cent changes in the
fraction of time covered by RN and NRN (Supporting Information
Fig. S5).

By detecting RN windows for each hour, we are able to estimate
the hourly mean spectral amplitude of the RN (Fig. 10). The ampli-
tude spectra change gradually from 1 hr to the next, supporting the
notion that the RN is quasi-stationary. Since there are more atmo-
spheric and anthropogenic activities in daytime hours, the energy
of scattered wavefield is also higher. Peaks at 20, 80 and 150 Hz
are consistently seen in the spectrograms, indicating various local
resonators including vegetation, ground structures and sedimen-
tary layers. The hourly mean spectral peaks at 125 Hz in Supporting

Information Fig. S6 and 110 Hz peak in Supporting Information Fig.
S7 may be associated, respectively, with instrumental effects and/or
coupling of the tree and antenna tower near sensors to the ground.
Fig. 11 summarizes daily records by the hourly percentage of RN,
NRN and the mixture for (a) Julian day 146 for all analysed geo-
phones and (b) all available days for a single geophone. The curves
in Fig. 11(b) are smoother and the uncertainties are slightly larger
than those in Fig. 11(a), but the overall structures are consistent.
The percentage of the day occupied by NRN decreases significantly
from ∼50 per cent in daytime to ∼30 per cent at night. The results
are consistent with the occurrence of the air-traffic events (Meng &
Ben-Zion 2018b) and wind-driven vibration of vegetation and local
structures with diurnal fluctuations that increase at the SGB site by
mid-day local time and subside during the evening hours (Johnson
et al. 2019).

It is important to note that since ∼35 per cent of the day is covered
by RN on average, 7 per cent of the day is occupied by air-traffic
events and 6 per cent by wind-related events, we can now classify
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Figure 9. (a) and (b) Zoom-in views of two 100 s windows highlighted by the grey horizontal bars in Figs 8(a) and (b). (c) and (d) Corresponding spectrograms
of (a) and (b). The RN, NRN and the mixture waveforms are coloured in red, black and blue, respectively.
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∼48 per cent the continuous waveforms at the SGB site. By exclud-
ing the NRN and mixture windows, the RN windows can be used to
stably estimate better and use for imaging and monitoring studies
noise spectra with windows excluding NRN signals. The method
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Figure 11. (a) Hourly mean percentage of RN, NRN and mixed signals for
all analyzed geophones in Fig. 1(b) for Julian day 146, 2014. (b) Hourly mean
percentage of RN, NRN and mixed signals for all available days at geophone
R3010. The shaded regions show the corresponding standard deviations.
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can be generalized to three-component records by redefining CMDN
i ,

CSTD
i and spectral deviation, and using the results of the different

components for deriving refined structural information (e.g. via H/V
ratios). Estimating the extent to which wavefields in different time
windows are diffused requires additional analyses (e.g. Margerin
et al. 2009; Sens-Schonfelder et al. 2015; Liu & Ben-Zion 2016).
This topic will be addressed in a follow-up study. The NRN covers
on average 40 per cent of the day and analysing these signals further
will provide improved understating of common sources producing
the observed ongoing ground motion. The RN windows detected
by our method can also provide a good training data set for studies
using machine learning for phase picking and signal classification.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.

Figure S1. RMS amplitude of all detected RN windows at station
R3010 in Julian day 146, 2014. The hourly RN is quasi-stationary.
Figure S2. Mean amplitude spectra of the RN templates in different
iterations for the two example hours shown in Figs 8(a) and (c). The
spectra converge quickly in four iterations.
Figure S3. (a) Example raw waveform recorded by sensor R3010
in Julian day 146, 2014 from 5:00 to 6:00 (local time). The RN,
NRN and the mixture windows are coloured in red, black and blue,
respectively. (b) Corresponding spectrogram of waveform in (a).
The colours denote power (dB). (c) and (d) Zoom-in views of two
200 s windows highlighted by the grey horizontal bars in (a) and (b).
The green vertical lines in (a) and (c) highlight the small earthquakes
detected by Meng & Ben-Zion (2018b).
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Figure S4. Waveforms generated by vibration of a tree next to
station R2005. (a) The self-normalized waveforms recorded by
R2005 and 10 nearby stations in a linear profile perpendicular to
the fault. The sensor spacing is about 10 m. (b) Corresponding self-
normalized amplitude spectra.
Figure S5. Changes in the fraction of time covered by RN, NRN and
mixture caused by the variations of domain size used to compute
the data points densities in Fig. 7.
Figure S6. Hourly mean spectral amplitude of detected RN in the
waveform recorded by geophone R2005 underneath a tree in Julian
day 146, 2014, with colours denoting the hours. (a) Results for 0:00–
12:00 GMT (17:00–5:00 local time). (b) Results for 12:00–24:00
GMT (5:00–17:00 local time).

Figure S7. Hourly mean spectral amplitude of the detected RN of
the waveform recorded by R0506 beneath an antenna tower for each
hour on Julian day 146, 2014, with colours denoting the hours. (a)
Results for 0:00–12:00 GMT (17:00–5:00 local time). (b) Results
for 12:00–24:00 GMT (5:00–17:00 local time).
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